Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Clin Lab Anal ; 36(6): e24479, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1826009

ABSTRACT

BACKGROUND: SARS-CoV-2 has spread worldwide causing more than 400 million people with virus infections since early 2020. Currently, the existing vaccines targeting the spike glycoprotein (S protein) of SARS-CoV-2 are facing great challenge from the infection of SARS-CoV-2 virus and its multiple S protein variants. Thus, we need to develop a new generation of vaccines to prevent infection of the SARS-CoV-2 variants. Compared with the S protein, the nucleocapsid protein (N protein) of SARS-CoV-2 is more conservative and less mutations, which also plays a vital role in viral infection. Therefore, the N protein may have the great potential for developing new vaccines. METHODS: The N protein of SARS-CoV-2 was recombinantly expressed and purified in Escherichia coli. Western Blot and ELISA assays were used to demonstrate the immunoreactivity of the recombinant N protein with the serum of 22 COVID-19 patients. We investigated further the response of the specific serum antibodies and cytokine production in BALB/c mice immunized with recombinant N protein by Western Blot and ELISA. RESULTS: The N protein had good immunoreactivity and the production of IgG antibody against N protein in COVID-19 patients was tightly correlated with disease severity. Furthermore, the N protein was used to immunize BALB/c mice to have elicited strong immune responses. Not only high levels of IgG antibody, but also cytokine-IFN-γ were produced in the N protein-immunized mice. Importantly, the N protein immunization induced a high level of IgM antibody produced in the mice. CONCLUSION: SARS-CoV-2 N protein shows a great big bundle of potentiality for developing a new generation of vaccines in fighting infection of SARS-CoV-2 and its variants.


Subject(s)
COVID-19 , Vaccines , Animals , Antibodies, Viral , COVID-19/prevention & control , Cytokines , Humans , Immunoglobulin G , Mice , Mice, Inbred BALB C , Nucleocapsid Proteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
2.
Front Pharmacol ; 12: 721769, 2021.
Article in English | MEDLINE | ID: covidwho-1512050

ABSTRACT

Coronavirus disease (COVID-19) patients with cardiovascular and metabolic disorders have been found to have a high risk of developing severe conditions with high mortality, further affecting the prognosis of COVID-19. However, the effect of hypertension and angiotensin-converting enzyme inhibitors (ACEI) and angiotensin receptor blocker (ARB) agents on the clinical characteristics and inflammatory immune responses in COVID-19 patients is still undefined. In this study, 90 COVID-19 patients were divided into hypertension and nonhypertension groups. The hypertension group was divided into well-controlled and poorly controlled subgroups based on blood pressure levels; moreover, hypertensive patients were also divided into ACEI/ARB and non-ACEI/ARB subgroups according to the administration of ACEI/ARB antihypertensive agents. The clinical characteristics of and inflammatory immune biomarker levels in the different groups of COVID-19 patients were compared, and the association between the combined effect of hypertension with ACEI/ARB antihypertensive agents and the severity of COVID-19 was examined. The results showed that the levels of aminotransferase (AST) and hs-cTnI were higher in the hypertension group compared with the nonhypertension group. The long-term use of ACEI/ARB agents in patients had statistically significantly lower AST, low-density lipoprotein cholesterol (LDL-C), and oxygen uptake and lower white cell count, neutrophil count, and levels of CD4, CD8, CRP, and PCT but without statistical significance. In addition, compared with COVID-19 patients without hypertension, hypertensive patients without the use of ACEI/ARB had a higher risk of developing severity of COVID-19 (for poorly controlled patients: OR = 3.97, 95% CI = 1.03-15.30; for well-controlled patients: OR = 6.48, 95% CI = 1.77-23.81). Hypertension could cause organ damage in COVID-19 patients, but the long-term use of ACEI/ARB agents may be beneficial to alleviate this injury.

SELECTION OF CITATIONS
SEARCH DETAIL